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The problem of expressing the axisymmetric state of stress in a body of revolution in terms 

of p-analytic functions of a complex variable reduces to the boundary value problem which 

was formulated by Polozhii in the form 

R* = R,ds, Z* = rZ,ds 
s 
L 

Here, @ (0, and t? ((1 are arbitrary p-analytic functions of the complex variable 

t= r + iz with characteristic l/r. 

In [2], the boundary conditions in the above form were applied to problems concerned 

with symmetric states of stress in thick, infinite plates for which the integral of the 

displacement u is zero. 

Below, we present a formulation of the first boundary value problem for the general 

case of an axiaymmetric state of stress in a body of revolution. The formulation of Polozhii 

is based on Papkovich’s general solution [3], which was expressed in terms of p-analytic 

functions of a complex variable. 

1. The proposed formulation is based on the general biharmonic solutions of Love [4] 

and Grodskii [5]. Let us write the necessary formulas for stresses and displacements. 

Corresponding to Love’s general solution satisfying the equation 

nnx = 0, n=f$(r$)+g 
(1.1) 
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we have the following expressions : 

For displacements 

For stresses 

Corresponding to Grodskii’s general solution of the equation 

DDQ = 0, D=r$-(f$)i-2 

we have the following expressions : 
For displacements 

For stresses 

2. Let us express the biharmonic functions X and fI in terms of the harmonic vectors 

‘pI, and Q, which satisfy the equations 

D (rcpl) = 0, A%= 0 (2.1) 

and for which the following relations [3] hold 

+ $ (rcpl) = $f , aql acp2 - - - -g a2 - 
For Love’s solution we assume that 

Then using (2.1) we obtain 

(2.2) 

(2.3) 

2 + & (W + D hd = A Pcpd9 2 2 + -ape = A @pa) 

Combining these equations and taking into account (2.3), we obtain 

Ax = A WI + WJ 

From which the integration yields 

(2.4) 

(2.5) 
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x = *1+ z’pz + Ya (2.6) 

Here ya is an arbitrary function satisfying 

the equation ATE = 0. 

To express Grodskii’s solution in terms of 

‘Pry and ‘pz, let 

DQ=2r ia: -2)~ 2rcurl(qr, ~a) (2.7) 

Then, with the aid of (2.1), we obtain, 

analogously to (2.4) 

Subtracting the second of these equations from the first and taking into account (2.7), 

we obtain 

DQ=D [r(z(Pr-r@l (2.9) 

which on integration yields 

(2.10) 

Here yl is an arbitrary function satisfying the equation D (ql) = 0. 

3. We now proceed to the formulation of the boundary value problem for the stress 

functions X and n. Consider a boundary element ; the following equilibrium equations, 

interrelating the applied stresses p, and pz and the internal stresses, u,, (~z, and r,.r 

must hold (see figure) : 

p, = Q, sin a + z,, cos a, (3.1) 

In view of the fact that, on the boundary, sina = dz / ds, and COST = - dr / ds, 

we obtain 

dz dr - 
pr = 6r ds - ‘,z ds ’ 

dz dr 
(3.2) 

Substitution of (1.3) into the preceding equations leads to the boundary conditions for 

X (s). Thus, making use of (2.2) and (2.3) in which it is assumed that 

we obtain 

(3.3) 

(3.4) 
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Integration of the preceding relations along the contour yields 

241 

(3.5) 

Substitution of these results into the expressions for the components of the principal 

external stress vector normal and tangential to the contour, leads to 

(3.6) 

(3.7) 

The first of these equations is now no longer integrable along the contour. 

Similarly, we may obtain expressions for the boundary conditions in connection with 

the stress function Q. Using of (1.51, (2.2), (2.7) and (3.2). we find that 

ax-r dz f a 
P,=--x--- r ar 

i aaS-2 
(3.8) 

*‘= -- 
r ar a2 

Utilization of these expressions and integration of the components of the principal 

vector of the applied stresses, results in (3.9) 

~5CPrds=~~+t~(f~)-4(1rp)~]L, Z+pzds=-~$I, 

t 
Use of the expressions In (3.6) for N and T yioIds 

The first equation in (3.10) may be integrated along the contow. Thus 

M=$Nds+- fg+c F], 

L 

(3.11) 

The above, together with (3.7). (3.9) and (3.101, yields the following integral expres- 

sion for M 

12) 

This completes the formulation of the first boundary value problem for an axieym- 

metrically loaded body of revolution. Furthermore, it may be shown that the function n 

satisfies the equation 
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Hence 

AAt-2’ = 0 (3.13) 

Q’ =x 

4. We will now express the stress functions X and R in terms of p-analytic functions 

of a complex variable [I] with the characteristic l/r 

f (8 = 'pl + icp2 (4.1) 

This is the terminology used in connection with a complex variable for which the con- 

ditions for the existence of a derivative at a point lead to (2.1) and (2.2). 

The stress functions X and n may now be expressed in terms of p-analytic functions 

of a complex variable in a manner which is completely analogous to the Kolosov- 

Muskhelishvili method for expressing stress functions in the plane problem in terms of 

general analytic functions [6 and 71. 

The expressions for X in the form given in (2.6) may be obtained in terms of f(t) by 

letting 
-- 

2x = E-f (El + Ef (El + i Ig (f) - g WI 

Here g (5) is an arbitrary p-analytic function. 

(g m = r1+ iY2) (4.2) 

It is convenient to write 12 in (2.10) as ro , where 

0 = Zcpl - rcp2 + Yl (4.3) 

Expressing it in terms of p-analytic functions, we obtain 

-- 
26J = i Rf (El - 0 @,I + g (8 + ET (8 (4.4) 

The complex representation of the principal vector of the applied load is given by: 

(4.5) 

R+iZ=-i [g + i %I,, -4(1-p) i[$- i g], + [+-21, 

when based on Lovs’s solution for X, taking into account (3.5), and by 

(4.6) 

when based on Grodskii’s solution for the stress function Q, taking into acconnt (3.9) and 

(3.13). 

Substituting (4.1), (4.2) and (4.4) into (4.5) and (4.6). we obtain 

R + fz = - i [f (8 + E?‘(t)] - &[f’(E,-m+ +r.(E)+-&m]+ 

(4.7) 
+ & i If’ (E) - 7 (EN + 2 (EI + & k”(t) + ,i” &I$ 

L 

R + iz6= {If’(E) + F(f) - V” (5) - 4 (I - p)j’(t)]--_g” (f) + 

+ & If (El+ f (F) + Ef’(S) + ET &I - & k’ (8 - 2 ($)I ) 
(4.8) 

L 
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Similarly, relations (3.10) and (3.11) ma a so be expressed in terms of functions of y 1 

a complex variable. 

Thus, in view of the analogy between the general solutions of the plane and axisym- 

metric problems in the theory of elasticity, we have succeeded in formulating the first 

boundary value problem for an axisymmetric state of stress in a body of revolution. 

1. 

2. 

3. 

4. 
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